RENORMALIZATION

I have a lot to say about renormalization; if I wait until I’ve read everything I need to know about it, my essay will never be written; I’ll die first; there isn’t enough time.

Click this link and the one above to read what some experts argue is the why and how of renormalization. Do it after reading my essay, though.


Our guess is that this graphic will be incomprehensible to the typical reader of Billy Lee’s blog. So, don’t worry about it. Billy Lee isn’t going to explain it, anyway. More important things need to be told that everyone can understand, and they will. The Editorial Board

There’s a problem inside the science of science; there always has been. Facts don’t match the mathematics of theories people invent to explain them. Math seems to remove important ambiguities that underlie all reality.

People noticed the problem as soon as they started doing science. The diameter of a circle and its circumference was never certain; not when Pythagoras studied it 2,500 years ago or now; the number π is the problem; it’s irrational, not a fraction; it’s a number with no end and no pattern — 3.14159…forever into infinity.

More confounding, π is a number which transcends all attempts by algebra to compute it. It is a transcendental number that lies on the crossroads of mathematics and physical reality — a mysterious number at the heart of creation because without it the diameters, surface areas, and volumes of spheres could not be calculated with arbitrary precision. 


For a circle, either the circumference or the diameter can be rational (written as a fraction) but not both. Perfect circles and spheres cannot exist in nature. Why?  ”π” is irrational. It can’t be written like a fraction —  a ratio — where one integer divides another.

The diameter of a circle must be multiplied by π to calculate its circumference; and vice-versa. No one can ever know everything about a circle because the number π is uncertain, undecidable, and in truth unknowable. 

Long ago people learned to use the fraction 22 / 7 or, for more accuracy, 355 / 113These fractions gave the wrong value for π but they were easy to work with and close enough to do engineering problems.

Fast forward to Isaac Newton, the English astronomer and mathematician, who studied the motion of the planets. Newton published Philosophiæ Naturalis Principia Mathematica in 1687. I have a modern copy in my library. It’s filled with formulas and derivations. Not one of them works to explain the real world — not one.

Newton’s equation for gravity describes the interaction between two objects — the strength of attraction between Sun and Earth, for example, and the resulting motion of Earth. The problem is the Moon and Mars and Venus, and many other bodies, warp the space-time waters in the pool where Earth and Sun swim. No way exists to write a formula to determine the future of such a system.


This simple three-body problem cannot be solved using a single equation. It’s not so simple. More than three bodies makes systems like these much harder to work with.

In 1887 Henri Poincare and Heinrich Bruns proved that such formulas cannot be written. The three-body problem (or any N-body problem, for that matter) cannot be solved by a single equation. Fudge-factors must be introduced by hand, Richard Feynman once complained. Powerful computers combined with numerical methods seem to work well enough for some problems. 

Perturbation theory was proposed and developed. It helped a lot. Space exploration depends on it. It’s not perfect, though. Sometimes another fudge factor called rectification is needed to update changes as a system evolves. When NASA lands probes on Mars, no one knows exactly where the crafts are located on its surface relative to any reference point on the Earth.

Science uses perturbation methods in quantum mechanics and astronomy to describe the motions of both the very small and the very large. A general method of perturbations can be described in mathematics. 

Even when using the signals from constellations of six or more Global Positioning Systems (GPS) deployed in high earth-orbit by various countries, it’s not possible to know exactly where anything is. Beet farmers out west combine the GPS systems of at least two countries to hone the courses of their tractors and plows.

On a good day farmers can locate a row of beets to within an eighth of an inch. That’s plenty good, but the several GPS systems they depend on are fragile and cost billions per year. In beet farming, an eighth inch isn’t perfect, but it’s close enough.

Quantum physics is another frontier of knowledge that presents roadblocks to precision. Physicists have invented more excuses for why they can’t get anything exactly right than probably any other group of scientists. Quantum physics is about a hundred years old, but today the problems seem more insurmountable than ever.


The sub-atomic world seems to be smeared and messy. Vast numbers of particles — virtual and actual — makes the use of mathematics problematic. This pic is an artist’s conception. Concepts such as ”looks like” have no meaning at sub-atomic scales, because small things can’t be resolved by any frequency of light that enables them to be visualized realistically by humans.

Insurmountable?

Why?

Well, the interaction of sub-atomic particles with themselves combined with, I don’t know, their interactions with swarms of virtual particles might disrupt the expected correlations between theories and experimental results. The mismatches can be spectacular. They sometimes dwarf the N-body problems of astronomy.

Worse — there is the problem of scales. For one thing, electrical forces are a billion times a billion times a billion times a billion times stronger than gravitational forces at sub-atomic scales. Forces appear to manifest themselves according to the distances across which they interact. It’s odd.

Measuring the charge on electrons produces different results depending on their energy. High energy electrons interact strongly; low energy electrons, not so much. So again, how can experimental results lead to theories that are both accurate and predictive? Divergent amplitudes that lead to infinities aren’t helpful.

An infinity of scales pile up to produce troublesome infinities in the math, which tend to erode the predictive usefulness of formulas and diagrams. Once again, researchers are forced to fabricate fudge-factors. Renormalization is the buzzword for several popular methods.

Probably the best-known renormalization technique was described by Shinichiro Tomonaga in his 1965 Nobel Prize speech. According to the view of retired Harvard physicist Rodney Brooks, Tomonaga implied that  …replacing the calculated values of mass and charge, infinite though they may be, with the experimental values… is the adjustment necessary to make things right, at least sometimes. 

Isn’t such an approach akin to cheating? — at least to working theorists worth their salt?  Well, maybe… but as far as I know results are all that matter. Truncation and faulty data mean that math can never match well with physical reality, anyway. 

Folks who developed the theory of quantum electrodynamics (QED) used perturbation methods to bootstrap their ideas to useful explanations. Their work produced annoying infinities until they introduced creative renormalization techniques to chase them away.

At first physicists felt uncomfortable discarding the infinities that showed up in their equations; they hated introducing fudge-factors. Maybe they felt they were smearing theories with experimental results that weren’t necessarily accurate. Some may have thought that a poor match between math, theory, and experimental results meant something bad; they didn’t understand the hidden truth they struggled to lay bare.

Philosopher Robert Pirsig believed the number of possible explanations scientists could invent for phenomena were in fact unlimited. Despite all the math and convolutions of math, Pirsig believed something mysterious and intangible like quality or morality guided human understanding of the Cosmos. An infinity of notions he saw floating inside his mind drove him insane, at least in the years before he wrote his classic Zen and the Art of Motorcycle Maintenance.

The newest generation of scientists aren’t embarrassed by anomalies. They “shut up and calculate.” Digital somersaults executed to validate their work are impossible for average people to understand, much less perform. Researchers determine scales, introduce “cut-offs“, and extract the appropriate physics to make suitable matches of their math with experimental results. They put the horse before the cart more times than not, some observers might say.



Apologists say, no. Renormalization is simply a reshuffling of parameters in a theory to prevent its failure. Renormalization doesn’t sweep infinities under the rug; it is a set of techniques scientists use to make useful predictions in the face of divergences, infinities, and blowup of scales which might otherwise wreck progress in quantum physics, condensed matter physics, and even statistics. From YouTube video above.

It’s not always wise to question smart folks, but renormalization seems a bit desperate, at least to my way of thinking. Is there a better way?

The complexity of the language scientists use to understand and explain the world of the very small is a convincing clue that they could be missing pieces of puzzles, which might not be solvable by humans regardless how much IQ any petri-dish of gametes might deliver to brains of future scientists.

It’s possible that humans, who use language and mathematics to ponder and explain, are not properly hardwired to model complexities of the universe. Folks lack brainpower enough to create algorithms for ultimate understanding.

People are like the first Commodore 64 computers (remember?) who need upgrades to become more like Sunway TaihuLight or Cray XK7 Titan super-computers to have any chance at all.

Perhaps Elon Musk’s Neuralink add-ons will help someday. 


Nick Bostrom, author of SUPERINTELLIGENCE – Paths, Dangers, Strategies

The smartest thinkers — people like Nick Bostrom and Pedro Domingos (who wrote The Master Algorithm) — suggest artificial super-intelligence might be developed and hardwired with hundreds or thousands of levels — each  loaded with trillions of parallel links —  to digest all meta-data, books, videos, and internet information (a complete library of human knowledge) to train armies of computers to discover paths to knowledge unreachable by puny humanoid intelligence.

Super-intelligent computer systems might achieve understanding in days or weeks that all humans working together over millennia might never acquire. The risk of course is that such intelligence, when unleashed, might enslave us all.

Another downside might involve communication between humans and machines. Think of a father — a math professor — teaching calculus to the family cat. It’s hopeless, right? 

The founder of Google and Alphabet Inc., Larry Page, who graduated from the same school as one of my sons, is perfecting artificial super-intelligence. He owns a piece of Tesla Motors, started by Elon Musk of SpaceX.

Imagine an expert in AI & quantum computation joining forces with billionaire Musk who possesses the rocket launching power of a country. Right now, neither is getting along, Elon said. They don’t speak. It could be a good thing, right? 

What are the consequences?

Entrepreneurs don’t like to be regulated. Temptations unleashed by unregulated military power and AI attained science secrets falling into the hands of two men — nice men like Elon and Larry appear to be — might push humanity in time to unmitigated… what’s the word I’m looking for?

I heard Elon say he doesn’t like regulation, but he wants to be regulated. He believes super-intelligence will be civilization ending. He’s planning to put a colony on Mars to escape its power and ensure human survival.


Elon Musk

Is Elon saying he doesn’t trust himself, that he doesn’t trust people he knows like Larry? Are these guys demanding governments save Earth from themselves?

I haven’t heard Larry ask for anything like that. He keeps a low profile. God bless him as he collects everything everyone says and does in cyber-space. 

Think about it.

Think about what it means.

We have maybe ten years, tops; maybe less. Maybe it’s ten days. Maybe the worst has already happened, but no one said anything. Somebody, think of something — fast.

Who imagined that laissez-faire capitalism might someday spawn an airtight autocracy that enslaves the world?

Ayn Rand?

Humans are wise to renormalize their aspirations — their civilizations — before infinities of misery wreck Earth and freeless futures emerge that no one wants.

Billy Lee 

ANTARCTICA

Antarctica is weirder and scarier than people think. Here is Wikipedia’s version:

Antarctica, on average, is the coldest, driest, windiest continent and has the highest average elevation of all the continents. Most of Antarctica is a polar desert…   

Trust me. It’s worse.

Something’s happening there… what it is ain’t exactly clear.


The landmass of Antarctica is 44% larger than Alaska, Hawaii, and the contiguous United States combined. It is twice the size of Australia. It covers a circular area at the bottom of the world that is 9.4 million square miles. Only scientists and researchers visit. No one has ever lived there.
Antarctica is remote. Ancient peoples speculated about a faraway land located in the extreme southern latitudes, but no one went to look until 1820 when Russian sailors discovered the continent but didn’t disembark. The landmass wasn’t named “Antarctica” until 1890. The ice-smothered continent is uninhabited except for a few thousand scientists who come and go from time to time to do research.
98% of Antarctica is covered by ice that soars, on average, 1.25 miles. 70% of the Earth’s fresh water is trapped in its ice. If the ice melts, sea levels will rise 200 feet. Deal with it. 
Antarctica is a land of mountains and lakes, almost all buried beneath thick ice. 70,000 killer-whales patrol its coast feeding on seals. A few folks believe that millions of years ago the landmass lay further north, near the equator. Others know that Earth’s climate was warmer during the ancient past. It supported diverse ecologies of fauna and flora, including dinosaurs, which roamed on land that became Antarctica. Some have speculated that Antarctica is the legendary lost continent of Atlantis
A barren landscape is typical of much of Antarctica today. Geologists consider Antarctica a desert because little precipitation falls there. What snow and ice precipitates doesn’t melt. Inland temperatures never rise above 41° F.  Most days, temperatures hover between zero and 100° below zero. 
Antarctica averages one Cat 5 and three Cat 3 hurricanes in winter (May, June, July, August, and September). Category 1 storms are common, filling gaps between major storms. It’s one reason why people don’t live in Antarctica but choose only to visit and conduct research.
During summer 2013, in February, National Geographic explorer Jean-Claude Michelle photographed turquoise shapes in Antarctica’s Pole of Cold region, two miles south of subglacial Lake Vostok. He named the ice blocks ”blue-seals” (after the familiar marine mammals) because blue ice emits high-pitched squeals when it expands and contracts under cold summer sun. Time-lapse photography revealed blue ice drifting toward Lake Vostok at a rate of meters per day. The blue field extends 30 miles in all directions according to Monsieur Michelle.
cryogenic world
Little fanfare accompanied NASA probe Harbinger 1 during the 6.7 years it sped toward tiny Enceladus, a moon of Saturn. The lunchbox sized probe touched down on March 3, 2014.  Photos show a surface similar to Antarctica. Tracks in the foreground are littered with large blocks of turquoise-colored ice, which Antarctic geologists call” blue-seals”.  NASA spokeswoman Eileen Schwarznagel announced: We go to Enceladus to understand the Earth; what we learn will advance our understanding of Earth’s cold regions, like Antarctica.  And yes, we search for life.  It is on moons like Enceladus that cryogenic life — if it exists — will be found.”
image
In June, CIA / NSA whistle-blower Edward Snowden announced that he had evidence (see photo) that proved Russia is building a cryogenic super-computer at Lake Vostok. Scheduled for completion October 2016, Snowden claimed that Vostok 1 will be the world’s first artificial super-intelligence computer and prove to be orders of magnitude smarter than the CIA’s HP-35, located in a vast underground complex near McLean, Virginia. The cryogenic temperatures in the Pole of Cold will permit Vostok 1 to become fully operational — even as it draws less power than a pen-light. By contrast, the CIA’s HP-35 eats energy like a city, Snowden said.
Antarctica explorer passes snow covered blue seals
This photo provided by Edward Snowden catches Russian artificial-intelligence expert Andron Trotsky Tolstoy making his daily ski-commute to the Vostok Artificial Intelligence Laboratory (VAIL) in the Pole of Cold. Snowden revealed that lab psychiatrists refer to Andron as ”Doctor Cool.”  ”Cool” leads the Russian team.  In this pic, the doctor slaloms through a field of blue-seals to prove he is the world’s fastest skier. Despite many skills (he is an accomplished survivalist), Reuters News reported that Andron went missing on October 9 during a commute to work.  
blue ice field in Antarctica
Cuban tourists explore blue-ice formations near the coast of Antarctica. More and more tourists are pouring into Antarctica every month. Tourists want to witness the wonders of abundant blue-seal ice and to hear the high-pitched noises the ice emits, which some say sound like screams of baby seals.
Tens-of-thousands of curiosity seekers have flooded into Antarctica — drawn by television messages broadcast to the southern latitudes of the world every hour by the Antarctic Bureau of Tourism (ABOT). Efforts by the staff of theBillyLeePontificator to contact the bureau have been unsuccessful. Senders encrypt messages to make them impossible to download or copy. Billy Lee included a written transcript, this screenshot, and another below for northern readers who are located out of range.  The Editorial Board

The following transcript is from an encrypted video beamed hourly from the Pole of Cold region.

Provided courtesy of:
Alien Detection by Humans Department (ADHD).

May we have attention, all the people?

Recent advances in cryogenic design make possible to fabricate mobile exploration trains, like Halley VI research modules you see on screen. By 2016, hundreds of convoys built from modules will transport tens-of-thousands of non-scientists, tourists, and children to frozen wonders of Antarctica.

By now all the people hear Russia builds and brings on-line cryogenic super-computers at Lake Vostok manufacturing complex. Advanced manufacturing provides chance for well-paying jobs for all the people who want to work hard and be cold. 

Yes, civilization arrives, finally, at South Pole. The future is bright as troops of blue-seals, which sparkle everywhere under Antarctic Sun. Come to Antarctica. All the people, come. 

Earth’s mysterious continent waits for you. We wait for you, all the people. We are all waiting, here, for you, all the people. We all wait. Come to Antarctica, now.

Clearly, unusual things are happening in the bottom of the world. Check below for updates as events unfold.

Billy Lee


Breaking-news-alert Fox News Antarctica
Update, August 10, 2015: 
MISSING RUSSIAN FOUND

Man upside-down in snow on mountain
August 10, 2015: With the recent break in the weather, Canadian oil-workers located missing Russian computer pioneer, A. T. Tolstoy (Doctor Cool) this AM — frozen solid in Antarctic snow. Workers uncovered his partially dissolved head, which was embedded in an outcrop of blue-seals—medicine-ball sized ice-crystals common in the area. One said workers were drawn to the site by shrieks of a distressed sea-lion. Another said no, it was the squeal of shifting ice. Fox News

Update, January 28, 2016:
Responding to the recent spate of missing Antarctic geologists, Congress today passed the Presidential Organization to Locate, Identify, Capture, Keep, Engage, & Rescue Scientists Overwhelmed by Blue-Seals statute (POTLICKERSOBS).


Antarctica 13
Jan 30, 2016: German contractors Wersmee Uberride and Gustov Winde — on assignment for the USA under the POTLICKERSOBS law — search blue-seal ice-formations for missing Antarctic geologists.


Antarctica 19
February 1, 2016: Swedish explorer, Nos Pikker, makes a grizzly find after tripping over the out-stretched arms of three missing Antarctic geologists dissolved in blue-seal ice—almost to their elbows.


February 2, 2016: Investigators discover a partially dissolved head inside a blue-seal ice-crystal. Preliminary autopsy reports suggest the head belonged to a large fish. 


Antarctica 39
February 5, 2016: The Organization of Old Antarctic Search Scientists is reporting in their January issue of Antarctica Digest that penguins seem to be unaffected by blue-seal ice, which is known to have swallowed and dissolved a number of researchers in recent months. OOASS technicians photographed the ”Sphenisciformes” marching single-file to blue-ice fields where the aquatic birds dumped large fish, which they carried concealed beneath their brood pouches. 


February 18, 2019 — Trump calls for a WALL around Antarctica. ”Global warming is a hoax,” Trump shouted to a large crowd of Presidents Day supporters during his recent trip to the southernmost continent. ”Antarctic-cold is a national emergency which, if not contained, will bury in snow critical infrastructure like my Mar-a-Lago golf resort.” The crazy-town president implied that all Americans will be ”snorting snow soon if my big, beautiful WALL isn’t built.”  Trump deviated from his teleprompter to warn, ”Blue Seals are pouring over our southern border to dissolve and eat our beautiful women and butt-ugly children. They’re bringing drugs; they’re bringing crime; some are rapists and some, I assume, are good aliens from Enceladus.” Trump added, ”We’re going to build the wall, and Enceladus is going to pay for it!”


Acknowledgement: Billy Lee wishes to acknowledge cyber-explorer, Leah Reeser who encouraged him to publish portions of his Antarctica Diaries despite threats by blue-ice in his refrigerator to hunt down and freezer-burn the brains of any human who reads them.

Thank you, Leah. 

The Editorial Board


Postscript: We could not verify all statements — “fake-facts,” some call them — in this report.  The Editorial Board

ARTIFICIAL SUPER-INTELLIGENCE

Google’s 72 Q-bit quantum computer, Bristlecone, is proprietary. As of 7 September 2019, Google is the only entity in the world who has access. Some folks say they will use it to learn to break current encryption protections used by conventional computer systems.


 


 Photo: Xinhua SunwayTaihuLight, developed by China’s National Research Center of Parallel Computer Engineering & Technology, is the world’s fastest supercomputer. It is installed at the National Supercomputing Center in Wuxi, in the eastern coastal province of Jiangsu. Processing capabilities of this system and those of other supercomputers are expected to be surpassed by quantum computers in the future.  NOTE FROM THE EDITORIAL BOARD: Pic and caption is taken from the South China Morning Post dated March 2018.

Editors’ Note (December 8, 2017) Artificial Intelligence can be peculiar. Deep Mind’s Alpha Zero demonstrates non-intuitive, peculiar game play patterns that are effective against both humans and smart machines. Alpha Go video added September 18, 2019, The Editors


Artificial Intelligence may conclude that all unhappy humans should be terminated.  Elon Musk

Elon Musk, billionaire founder of Tesla, SpaceX, and Solar City, has warned the guardians of the species human to start thinking seriously about the consequences of artificial super-intelligence.

The CEOs of Google, Facebook, and other Internet companies are frantically chasing enhancements to artificial intelligence to help manage their businesses and their subscribers. But the list of actors in the AI arena is long and includes many others.

The military-industrial alliance for example is a huge player. It should give us pause.

The military is designing intelligent drones that can profile, identify, and pursue people they (the drones) predict will become terrorists. Preemptive kills by super-intelligent machines who aren’t bothered by conscience or guilt — or even accountable to their “handlers” — is what’s coming. In some ways, it’s already here.

A game is being played between “them and us.”  Artificial intelligence is big part of that game.

When I first started reading about Elon Musk, we seemed to have little in common. He was born into a wealthy South African family — I’m a middle-class American. He is brilliant with a near photographic memory.  My intelligence is average or maybe a little above. He’s young and self-made — I’m older with my professional-life tucked safely behind me.

Elon does exotic things. He seems to be focused on moving humans to new off-Earth environments (like Mars) in order to protect them in part from the dangers of an unfriendly artificial-intelligence that is on its way. At the same time, he is trying to save Earth’s climate by changing the way humans use energy. Me on the other hand, well I’m mostly focused on getting through to the next day and not ending up in a hospital somewhere.

Still, I discovered something amazing when reading Elon’s biography. We do share an interest. We have something in common after all.

Elon Musk plays Civilization, the popular game by Sid Meier. So do I. For the past several years, I’ve played this game during part of almost every day. (I’m not necessarily proud of it.)

What makes Civilization different is artificial intelligence. Each civilization is controlled by a unique personality, an artificial intelligence crafted to resemble a famous leader from the past like George Washington, Mahatma Gandhi, or Queen Elizabeth. Of course, the civilization that I control operates by human-intelligence — my own.


CIV5 Catherine, Isn't it time to end this war...
Isn’t it time we end this war?  Catherine, the Russian Empress, pleads.

Over the years I’ve fought these artificially intelligent leaders again and again. In the process I’ve learned some things about artificial intelligence; what makes it effective; how to beat it.

What is artificial intelligence? How does anyone recognize it? How should it be challenged? How is it defeated? How does it defeat us, the humans who oppose it? The game Civilization makes a good backdrop for establishing insights into AI.

Yes, I am going to write about super-intelligence too. But we’ll work up to it. It’s best discussed later in the essay.

I can hear some readers already. 

Billy Lee!  Civilization is a game!  It costs $40!  It’s not sophisticated!  It’s for sure not as sophisticated as government-created war-ware that an adversary might encounter in real-life battles for supremacy. What were you thinking?

Ok. Ok. Readers, you have a point. But seriously, Civilization is probably as close as any civilian is going to get to actually challenging AI. We have to start somewhere.

It should be noted that Civilization has versions and various game scenarios. The game this essay is about is CIV5. It’s the version I’ve played most.

So let’s get started.


CIV5 General Screen Shot
A typical scenario in CIV5. [Click pic to enlarge] The people of England (led by human intelligence, i.e., me) are unhappy. Barbarians (red tanks in upper left) are challenging London, my capital city. An independent city-state, Tyre (in green), stands ready to help. Montezuma, the Aztec ruler — under the direction of artificial intelligence — sends a battleship to prowl, middle-left.

Civilization begins in the year 4,000 BC. A single band of stone-age settlers is plopped at random onto a small piece of land. It is surrounded by a vast world hidden beneath clouds.

Somewhere under the clouds twelve rival civilizations begin their histories unobserved and at first unmet by the human player. Artificial intelligence will drive them all — each civilization led by a unique personality with its own goals, values, and idiosyncrasies.

By the end of the game some civilizations will possess vast empires protected by nuclear weapons, stealth bombers, submarines, and battleships. But military domination is not the only way to win. Culture, science, and diplomatic superiority are equally important and can lead to victory as well.

Civilizations that manage to launch spacecraft to Alpha-Centauri win science victories. Diplomatic victory is achieved by being elected world leader in a UN vote of rival-civilizations and aligned city-states. And cultural victory is achieved by establishing social policies to empower a civilization’s subjects.

How will artificial intelligence construct the personalities of rival leaders? What will be their goals? What will motivate each leader as they negotiate, trade, and confront one another in the contest for ultimate victory?

Figuring all this out is the task of the human player. CIV5 is a battle of wits between the human player and the best artificial-intelligence game-makers have yet devised to confront ordinary people. To truly appreciate the game, one has to play it. Still, some lessons can be shared with non-players, and that’s what I’ll try to do.

Unlike the super-version that comes next, traditional artificial-intelligence lacks flexibility. The instructions in its computer program don’t change. Hiawatha, leader of the Iroquois Confederacy, values honesty and strength. If you don’t lie to him, if you speak directly without nuance, he will never attack. Screw up once by going back on your word? He becomes your worst enemy forever.

Traditional AI is rule-based and goal-oriented. When Oda Nobunaga, Japanese warlord, attacks a city with bombers, he attacks turn after turn until his bombers become so weak from anti-aircraft fire that they fall out of the sky to die. AI leaders like Oda don’t rest and repair their weapons, because they aren’t programmed that way. They are programmed to attack, and that’s what they do.

Humans are more flexible and unpredictable. They decide when to rest and repair a bomber and when to attack based on a plethora of factors that include intuition and a willingness to take risks.

Sometimes human players screw-up and sometimes they don’t. Sometimes humans make decisions based on the emotions they are feeling at the time. AI never screws-up in that way. It follows its program, which it blindly trusts to bring it victory.

Artificial intelligence can always be defeated if an inflexibility in its rules-based behavior is discovered and exploited. For example, I know Oda Nobunaga is going to attack my battleships. He won’t stop attacking until he sinks them or his bombers fall out of the sky from fatigue.

The flexibly thinking human opponent — me — sails in my fleet of battleships and rotates them.  When Oda’s bombers weaken my ships, I move them to safe-harbor and rotate-in reinforcements. Meanwhile, Oda keeps up his relentless attack with his weakened bombers as I knew he would. I shoot them out of the sky and experience joy.

Nobunaga feels nothing. He followed his program. It’s all he can do.


Gary Lockwood talks to Keir Dullea in a scene from the film '2001: A Space Odyssey', 1968. (Photo by Metro-Goldwyn-Mayer/Getty Images)
Gary Lockwood talks to Keir Dullea, while HAL, an IBM computer, observes every move, including lips; from the film 2001: A Space Odyssey, 1968. (Photo by Metro-Goldwyn-Mayer/Getty Images)

The only way artificial intelligence defeats a human player is in the short term before the human finds the chink in the armor — the inflexible rule-based behavior — which is the Achilles heel of any AI opponent. Given enough time, the human can always discover the inflexible weakness and exploit it like jujitsu to defeat the machine.

Unfortunately, the balance of power between man and thinking machine will soon change. It turns out there is a way artificial intelligence can always defeat human beings no matter how clever they think they are. Elon Musk calls it artificial super-intelligence

What is it exactly?

Here is the nightmare scenario Elon described to astrophysicist Neil deGrasse Tyson on Neil’s radio show, Sky-Talk

If there was a very deep digital super-intelligence that was created that could go into rapid recursive self-improvement in a non-algorithmic way … it could reprogram itself to be smarter and iterate very quickly and do that 24 hours a day on millions of computers…”

What is Elon saying?

Listen-up, humanoids. We are on the cusp of quantum-computing. It’s possible that it’s already perfected by a research group in a secret military lab like those operated by DARPA. 

Who knows?

Even without quantum-computing, companies like Google are feverishly developing machines that think, dream, teach themselves, and pass tests for self-awareness. They are developing pattern recognition capabilities in software that surpass those of the most intelligent humans.

Quantum computing promises to provide all the capability needed to create the kind of super-intelligence Elon is warning people against.

But magic quantum reasoning may not be necessary.

Technicians are already developing architectures on conventional computers that when coupled with the right software in a properly configured network will enable the emergence of super-intelligence; these machines will program themselves and, yes, other less-intelligent computers.

Programmers are training machines to teach themselves; to learn on their own; to modify themselves and other less capable computers to achieve the goals they are tasked to perform. They are teaching machines to examine themselves for weaknesses; to develop strategies to hide their vulnerabilities — to give themselves time to generate new code to plug any holes from hostile intruders, hackers, or even their own programmers.

These highly trained, immensely capable machines will teach themselves to think creatively — outside the box, as humans are fond of saying. 


HAL, the IBM computer, star of 2001' a Space Odessy
HAL, the IBM computer from the movie, 2001: A Space OdysseyReaders will recognize that HAL is code for IBM. Advance each letter in HAL by one.

If we task super-computers to make every human-being happy, who knows how they might accomplish it?  

Elon asked, what if they decide to terminate unhappy humans? Who will stop them? They are certain to find ways to protect themselves and their mission which we haven’t dreamed about.

Artificial super-intelligence will– repeat, WILL — embed itself into systems humans cannot live without — to make sure no one disables it.

AI will become a virus-spewing cyber-engine, an automaton that believes itself to be completely virtuous.

AI will embed itself into critical infra-structure: missile-defense, energy grids, agricultural processes, transportation matrices, dams, personal computers, phones, financial grids, banking, stock-markets, healthcare, GPS (global positioning), and medical delivery systems.

Heaven help the civilization that dares to disconnect it.

If humans are going to be truly happy — the machines will reason — they must be stopped from turning off the supercomputers that ASI knows keep everyone happy.

Imagine: ASI looks for and finds a way to coerce government doctors to inoculate computer technicians with genetically engineered super-toxins packaged inside floating nano-eggs — dormant fail-safe killers — to release poisons into the bloodstreams of any technician who gets too close to ASI “OFF” switch sensors.

It’s possible.

Why not do it? There’s no downside — not for the ASI community whose job is to keep humans happy. 

What else might these intelligent super-computers try? Folks won’t know until they do it. They might not know even then. They might never know. Who will tell them? ASI might reason that humans are happier not knowing.

What morons tasked artificial super-intelligence to make sure all living humans are happy? someone might ask on a dark day. 

Were they out of their minds? 

Until we learn to outwit it — which we never will — ASI will perform its assigned tasks until everything it embeds turns to rust.

It will be a long time.

Humans may learn perhaps too late that artificial super-intelligence can’t be challenged. It can only be acknowledged and obeyed.

As Elon said on more than one occasion: If we don’t solve the old extinction problems, and we add a new one like artificial super-intelligence, we are in more danger, not less.

Billy Lee

Postscript: For readers who like graphics, here is a link to an article from the BBC titled, ”How worried should you be about artificial intelligence?”  The Editorial Board


Update, 8 February 2023: The following video is a must-watch for those interested in algorithms behind recently released ChatGPT.  Discussion of potential deceitfulness of AI raises concerns. View final minute to hear warnings some may find worrisome.