“C”

NOTE:  The members of the EDITORIAL BOARD are aware that many readers may not have studied physics or astronomy. They might be under the false impression that an article like the one that follows is going to be incomprehensible. 

Nothing could be farther from the truth. Yes, those who have studied Maxwell’s Equations and Einstein’s theories will find his essay a kind of cakewalk. No doubt, eggheads will have issues with some assertions. Submit objections in comments — your head does not have to look like an egg.

WE, THE EDITORS wish to reassure readers — especially those who have yet to study math and science — that they have intelligence and imagination enuf to understand Billy Lee’s basic arguments.

We know Billy Lee. We work with him every day. He talks and tweets a lot but what does he really know? 

Billy Lee likes to share notions with folks who can read. He claims it does no harm. For those who get “high” on science, Billy Lee included videos to make rabbit-hole hopping fun. Don’t be afraid to watch some.

THE EDITORIAL BOARD
 


UPDATE BY THE EDITORIAL BOARD:  May 15, 2019; Victor T. Toth, the Hungarian software developer, author, and Quora guru of quantum physics wrote, “a photon has no rest mass, but it carries plenty of energy, and it has momentum.  Its stress-energy-momentum tensor is certainly not zero.  So it can be a source of gravity, it has inertia, and it responds to gravity.  […] relativity theory predicts … twice the deflection angle for a photon in a gravitational field than the deflection of a Newtonian particle.”

Almost a century of experiments plus hundreds of upvotes on Quora by physicists seem to validate Victor’s argument. 


The photon is known to be the only massless, free-moving particle in the Standard Model of physics. Other massless particles are the gluon, the graviton, and of course the Higgs, discovered in 2012 at CERN. Europeans plan to build a Higgs factory to learn more about them. Gluons mediate the strong force. They don’t propagate through empty space.  No one has yet observed even a single graviton. Higgs give fermions like quarks their mass. 

Photons have an electric and magnetic structure. They are electromagnetic pulses of energy that emerge from atoms when electrons drop from a higher energy state to a lower one. When electrons shed energy, a pulse of electromagnetic radiation is emitted — a photon of light.


Click pic for better view in new tab.

Photons of light can be emitted from atoms at different frequencies — colors when wavelengths fall within the narrow range that humans see. These frequencies depend on the energy of electrons, which exist in many differently configured shells (or orbitals) within both atoms and molecules.

Wavelengths of light felt but not seen are called infrared; other invisible frequencies fall into broad categories such as radio waves, microwaves, x-rays, gamma rays and so on — all require instruments to detect.


Electromagnetic radiation is the medium through which humans observe and interact with everything knowable in the universe. Humans live inside an electromagnetic bubble that they are struggling to understand.

One thing most physicists understand is that a disturbing 95% of the energy and mass of the universe comes from a source no one can see. Physicists observe the effects of invisible (dark) matter and invisible (dark) energy by measuring the unusual dynamics of galaxies and by cataloging the physical organization and expansion of the universe itself.



These measurements make no sense unless folks assume that a lot of gravitationally interacting stuff is out there which no one has yet observationally confirmed. The missing mass is not debris or dark stars. The most exaggerated conjectures about how much mass and energy is scattered among the stars won’t come anywhere near enough to explain forces that make galaxies behave strangely.

Dark matter and energy don’t seem to be electromagnetic. Dark matter, if it exists, interacts with the mass of two-trillion galaxies and seems to refract their emitted light. Humans are blind to all of it.

Scientists postulate matter they call WIMPS, MACHOS, axions, and erebons.  Each has a few properties necessary to make the universe work as observed, but none have all the required properties except perhaps erebons, if Roger Penrose’s Conformal Cyclic Cosmology (CCC) is someday verified.

Other candidates for dark matter? — why not sterile neutrinos, GIMPs, and SIMPs

Space-saturating foam of micro-sized black holes is another idea some have proposed. The problem is that theorists believe tiny black holes might be too stable to radiate electromagnetic waves or gravity waves.

Micro-holes lie in a sort of crevice of invisibility — unobservable by LIGO and LISA style gravity-wave sensors, yet too massive for current and future particle-colliders like CERN to create. 

Because micro-holes don’t radiate light at any frequency, light telescopes will never find them. No imagined interaction of micro-holes is able to generate gravity-waves with enough disruptive power in spacetime to be detected. The nature of physics seems to suggest that no technology can be developed to confirm or deny the black-hole foam idea. 

Perhaps the same dilemma faces dark matter detection. We know it exists, but physics says we can never find it. It will always lie just outside our reach doing its work in an invisible universe no one will ever see. 

Worse, not one of the proposed forms of “dark” matter has ever been observed or identified. It is likely that no experiment currently scheduled will detect dark matter, which many physicists believe is “out there” and makes maybe four parts out of five of all the matter in the universe.

It’s an incredible paradox for conscious humans to live in a universe where they are blind to almost every important thing that is happening within and around them.

Humanoids are like fish which spend their lives swimming in streams buried deep inside caves. Spelunkers like me know that certain species of cave fish have no eyes. They lack all ability to see their world — as do we, it seems. As intelligent as people are, they don’t yet build sensors capable of confirming their notions about what the universe might actually be at large scales or small.  

Oh well…  someday maybe new discoveries will make our predicament evaporate away.  The universe will reveal itself to humans, as we knew it would. Our dream to fully understand reality will come true.

Some day.

Scientists have sensible mathematics to show that if electromagnetic particles are massless, they must travel at an upper limit, called c.  Over decades, folks decided that this constant is the speed of a photon in a vacuum; they decided that photons have no internal rest mass and travel in vacuum at a speed limit — the speed of light.

The truth might be more mysterious. No one knows what the upper limit of “c” is, because no one knows with certainty that space is truly empty or that massless particles exist.

When physicists say that certain particles are massless, they sometimes mean that they don’t interact with the Higgs Field, which is known to give mass to fermions, like quarks. They don’t mean they don’t have energy, specifically kinetic energy, which is a form of inertial mass, right? They also aren’t saying photons don’t interact gravitationally. They do, in a special way described by the geodesics of spacetime in Einstein’s General Relativity. 

More on this idea later. 



British physicist Brian Cox wrote in his book  Why Does E = mc2 ?  that the question about whether photons have rest mass is not yet settled.

It’s true that more than a few reasonable people seem to believe that photons traveling freely in the vacuum of space are massless. If they truly are then the permittivity constant “ε” in Maxwell’s equation can be established for electro-magnetic particles (like photons).


The formula below is used to calculate the speed of a massless electromagnetic particle; it is thought to be a maximum speed.


For now, ignore the μ term. It is the permeability (resistance) of vacuum to infusion by a magnetic field, which is determined by experiment. It is sometimes called the magnetic constant.

Epsilon (ε} is the permittivity (resistance) of vacuum to an electric field. It is sometimes called the electric constant.

c” is the so-called ”universal speed limit.” It is called the lightspeed constant

These three numbers — μ, ε, and — help to define the maximum velocity of an electromagnetic wave, which most people believe is the archetypal photon (of light). They assume that the photon packet travels at the maximum allowable speed in a vacuum.

A problem with this view is that no one has proved that space is free; or that space has no weight; or that photons have no rest mass; or that undiscovered particles formed from forces other than electricity and magnetism don’t exist. A few scientists have said that there might be no such things as free space or massless photons. It is also possible that space presents less resistance to other phenomenon yet to be discovered.

The idea that ”dark” matter and energy must exist to make the universe behave the way it does is compelling to many physicists. If true, it is possible — though light travels nearly 300 million meters-per-second — it is not traveling at the maximum speed of a generic, massless particle. The electric constant (ε) might need to be adjusted.

A decrease in the permittivity (resistance) of space (ε) — made obvious by inclusion of vast number of photons in the cosmic microwave background  — drives ”ε” to be smaller and ”c” to be larger, right? 

New particles, dark and as yet undiscovered, might do the same. The consequences could be significant.

Determining the upper speed of a massless particle requires a form of circular reasoning that is currently based on the measurement of the velocity of photons in a vacuum, which is called the speed of light.

The measured velocity of light in a vacuum is now an established constant of nature with a fixed value that doesn’t change regardless of the frame of reference. Modern labs have measured both the frequencies and wavelengths of various colors of light; multiplying the two numbers together always yields the same result — the speed of light.

Knowing the speed of light permits physicists to establish a value for ε by working backwards in the wave equation to solve for the electric permittivity of space. The value of “ε” falls easily from Maxwell’s Equations to a precision of 12 places.

It can’t be any other way. But is it the right way?

Here’s the problem: Physicists have measured mass in photons during experiments at the linear accelerator lab at Stanford University, SLAC.

In superconductors, photon mass has been measured to be as high as 1.2 eV.

Photon mass has been observed in wave guides and in plasmas.

Fact is, photons have inertial mass, which is a measure of their energy as calculated from their wavelengths or frequencies. In relativity theory, energy and mass are measured in the same units, electron-volts, because in the theory, mass and energy are equivalent. 


Click this link to view CLOSER TO TRUTH interview with Raphael Bousso.

Cosmologist, Raphael Bousso, believes that empty space has weight, which is a measure of the cosmological constant, which is a measure of dark energy.

Space seems to be saturated like a sponge with something that gives it energy or force or weight if you will. The weight of empty space determines the size of the universe and some of its fundamental laws. Universes beyond our own with different weights of space can be larger or smaller and obey different rules.

Most physicists agree that photons become massive when they travel through transparent materials like glass, where they slow down by as much as 40%.

The problem is that these observations conflict with both the Heisenberg and the Schrodinger view of quantum mechanics, which is the most tested and confirmed model physicists have. Modern ideas seem to work best when photon mass is placed on the energy side of the mass-energy column. Otherwise, the presence of internal mass suggests that photons can be restrained to a defined size, which drives their momentums to infinity.

The truth is that it is not possible to prove that photons are massless. The stress-energy-momentum tensor in Einstein’s equation of General Relativity implies that photons can be both the source and the object of gravity.  I’m referring to this tensor as “mass” and leaving it there for others to dispute. A rabbit hole for courageous readers to explore is the concept of pseudotensor, which this essay will avoid. 

It is also not true that a photon can never be at rest either.  Lab techs do unusual things with photons during experiments with lasers and superconductors — including slowing photons down and even stopping some (with supercooled helium-4).  Right?

Another problem is the electromagnetic nature of light. The electric part of a light-wave carries enough energy to move an electron up and down. The magnetic part carries the same energy but its motion creates a force that pushes electrons outward in the same direction as the light. It’s why light-sails work in space. Oscillating magnetic fields push light forward. Otherwise, light might stand in one place and simply jiggle. But is light-speed the best magnetic fields can do? 

Electromagnetism could be irrelevant in the search for an upper speed limit “c“, because “c” might prove to be the result of an unknown set of particles with properties outside the current boundaries of the Standard Model. 

Massless particles, — undiscovered ones anyway — might not be electromagnetic. Humans might be biologically unfit to detect them; unable to measure their properties. 

For those who might be rolling their eyes, remember that physicists claim that 95% of the mass and energy required to make the universe behave the way it does is missing. They call the missing stuff “dark” because they can’t find it. Excuse me should anyone catch me rolling my eyes. 

Some theorists have speculated that “dark photons” might exist to help fill in the gaps. The popular TV show How the Universe Works actually repeated the idea in an episode of its latest series. The writers were probably referring to axions, which some physicists propose are similar to photons except that they have mass and are slower moving.

Photons are bosons. They are force carriers for electrons, correct?

Maybe folks should try to accept the notion that nothing in physics prevents bosons like photons from having mass or from taking on mass when they whiz over and through atoms and molecules (in glass and water, for example) where some physicists conjecture, they stimulate the release of polaritons in their wake. Jiggling electrons that lack the energy to jump states emit polaritons, which seem to add enough equivalent mass to photons to slow them down. Think of polaritons as light-matter wavelets

Massive, gravitationally interacting photons are not required to be “dark.”  If photons are the dark matter, axions are unnecessary to solve certain problems both in cosmology and the Standard Model.  No experiment will find them.

I mentioned that three other particles are presumed to be massless: the gluon, the graviton, and the Higgs boson. 

To review, the gluon is not easily observed except in particle colliders where it lives briefly before decaying into other particles; it is confined among the protons and neutrons in the nuclei of atoms. The graviton, on the other hand, has never been observed. The Higgs boson was discovered in 2012. CERN plans to build a Higgs factory someday to explore its properties.

The only particle available to physicists right now that enables them to establish the permittivity of space and compute the velocity of massless particles is the photon.

That’s it.

If the photon has internal mass, i.e., rest mass, everything changes.



Let’s hop into a rabbit hole for a moment and go back a step: What if massless, non-electromagnetic particles mediate entanglement, for example? Wherever paired electrons are found, entanglement rules, right?

Everyone knows that entanglement violates laws of logic and physics. No one can make sense of it.

What if massless non-electromagnetic particles entangle the electromagnetic particles of the subatomic world? If they travel a thousand or ten-thousand times the speed of light, they will present an illusion over short planetary scales that entanglement is instantaneous. No instrument or lab will detect the difference.

What are the consequences if massless non-electromagnetic particles travel at a billion times the speed of light? Maxwell’s equations won’t apply to particles like these. 

Because it seems that speeds of subatomic particles like photons are able to increase as their masses approach zero, it is possible that “c” could be orders of magnitude faster than the speed of a photon — that is, the speed of light — if it turns out that photons harbor tiny but significant rest masses.

I’m not advocating this notion. Let’s crawl out of the rabbit hole. I’m suggesting only that such a state of affairs is possible, because the assumption that photons at rest are massless — that internal mass of photons is always zero — though reasonable and desirable to justify models, is not yet settled according to some physicists.

And there is, of course, the phenomenon of entanglement which no one can explain.

Here’s speculation that should blow the mind of any thinking person: Could photons, if shown to have internal mass, be the stuff that make the galaxies move in the non-intuitive ways they do?

Yes, some physicists argue that the upper limit on the internal (rest mass) of a photon must be less than 10-52 kilograms, which is about 5.6E-17 eV for folks who think that way. (Multiply mass by the speed of light twice to make the conversion and divide by 1.60218E-19 Joules per eV.)

5.6E-17 eV doesn’t seem like much mass at all until folks realize that the minimum number of photons in the universe might be as high as 1090.   This number is ten billion times the number of atoms in the universe. It means that the internal mass contribution from photons alone could easily exceed 1038 kilograms if the upper limit proposed by some is used to perform the calculation.

Do the math, anyone who doesn’t believe it.

Guess what?

Prepare for a letdown.

Based on the conjectured eVs, the mass of all material in the visible universe is in the neighborhood of 1053  kilograms. The video below will help the reader understand how this value and others are calculated. The mass of the visible universe turns out to be 1,000 trillion times more than the conjectured internal mass of all photons.



Think about it.

Is it enough mass to account for the galaxy anomalies seen by astrophysicists?  To any reasonable mind the answer is obviously, no. But this conclusion is not the end of the story. 



Those who study astronomy know that the outer stars in galaxies seem to move at roughly the same speed as the inner. Yet the galaxies aren’t flying apart.

By way of contrast, the planets in solar systems like ours travel slower the farther away they orbit from their sun.  If Neptune orbited as fast as Earth, it would fly away into deep space.

A recalibration to account for the internal mass of photons of light (which seems to always be discounted) does not at first blush offer the gravitational heft that astrophysicists require to make everything on galactic scales fall into place.

The cosmic background radiation — which is nothing more than photons that decoupled close to the beginning of time — saturates the universe like vinegar in a sponge, right?  It is distributed evenly across all space for as far as human-built instruments can see.

The CMB makes an annoying hum in radio telescopes no matter their focus or where they point. Photons with tiny internal masses or no mass at all will have no influence on the understanding by astrophysicists of how the universe behaves.

Neutrinos, which seem to oscillate between three (or perhaps four) as yet undetermined massive states, might at times take on values below the actual mass-value of photons — if photons turn out to be more massive than most believe. The laws of physics require that neutrinos less massive than massive photons, should they exist, must travel superluminally (faster than light).  Agreed?

Several “discredited” observations have reported faster-than-light neutrinos, including the unexpected outcome of the infamous OPERA experiment, which inspectors eventually blamed on a loose fiber-optic cable that was ever-so-slightly longer than it should have been.  

OK.  It seems reasonable.  Who can argue?

Scientists who believe that superluminal neutrinos actually exist don’t speak up, perhaps out of fear for their careers. They probably couldn’t get their opinions published anyway, right?


Click pic for better view in new tab.

Crackpot ideas that later prove valid is how science sometimes works. It’s how science has become the mess that it is — a chaos of observations that can’t make sense out of 95% of what is going on all around; a plethora of experimental results that don’t quite match the work of theorists.

The super-brilliant people who paint the mathematical structures of ultimate reality rely on physicists to smear their masterworks with the muds of perturbation, renormalization, and a half dozen other incomprehensible substrates to get the few phenomenon folks think they understand to look right and make sense. Theory and experiment don’t seem to match-up as well as some folks think they should more times than not.

A minor recalibration based on the acceptance of photons as quantum objects with tiny, almost unmeasurable masses will not change ideas about the nature of the universe and what is possible, because the upper-bound on photon masses might be undervalued — perhaps by a factor of billions.



Theorists like Nima Arkani-Hamed work on abstract geometries called amplituhedrons to salvage notions of massless particles while simplifying calculations of scattering probabilities in quantum mechanics. It seems to me like hopeless adventures doomed to fail. But in fairness so did Columbus’s exploration for new worlds.

To be a serious candidate for dark matter, a typical microwave photon should have an average mass of nearly .05 eV (electron volts), which is about 9 x 10-38 kilograms. If multiplied by the number of photons ( 1090 ), the photon masses add almost miraculously to become 85% of the theoretical mass of the universe.

(1E90)*(9E-38) = 9E52.  (9E52) / .85 = 1E53 kg. 

It’s the same number conjectured by dark-matter advocates. 

To qualify for dark matter means that a typical or average photon must have close to one ten-millionth of the mass of an electron.

Only then does everything fall into place like it should.

Pull out the calculator, anyone who doesn’t believe it.



Einstein, in his famous 1905 paper on special relativity, showed that mass is equivalent to the energy of an object divided twice by a constant, which is “c” squared, right?

Later, he added a second term to the internal energy of a particle which is its inertial energy, pc2 . Simplified, this term equals hf for a massless photon. The total energy of any object is the square root of the sum of its internal energy and its inertial energy. 

E = \sqrt {(mc^2)^2 + (pc)^2}

If Einstein is taken at his word, then the inertial mass of a photon is a function of its characteristic frequency — i.e. the inertial mass of a photon is equal to 

\frac{hf}{c^2}

where “h” is the Planck constant and “c” is the speed of light. The internal mass, should any exist, can be discounted. 

An argument can be made from Einstein’s equations that the mass of a photon might be \sqrt {2} times larger. A factor of 1.414… won’t change the argument. It strengthens the point but is, in the end, not important enough to include in an article that is already overly long. Curious readers can review the reasoning in my essay General & Special Relativity

If the average photon has an inertial mass of .05 eV, it requires that — all else being equal — the combined photon energy in a non-expanding universe would lie in the range of infrared light, a frequency in this case of 12E12 Hz, which is sometimes referred to as far-infrared.

(Set equivalent-mass equal to .05 eV (8.9E-38 kilograms) and solve for frequency.) The frequency approaches the lower energy microwave part of the light spectrum. 

Note:  For perspective, one eV is the energy (or mass equivalent) of a near-infrared photon of frequency 242E12 Hz, which approaches from below the higher-energy visible-light part of the light spectrum. 

The mass equivalence of the inertial energy of 1E90 infrared photons is sufficient to hold the universe together to prevent runaway expansion caused by repulsion due to the gravity constant Λ in Einstein’s equation for General Relativity. 

Do the math.

I know what some people might be thinking: Didn’t the 29 May 1919 solar eclipse, which enabled observers to confirm Einstein’s theory of General Relativity, demonstrate that photons lack internal mass?  Didn’t Eddington’s experiment prove wrong Newton’s idea that photons, which he called corpuscles, were massive objects? 

Maybe. Maybe not.  Maybe internal mass isn’t necessary. There is enough energy in the inertial term of Einstein’s equation to yield the required mass.

Unlike massive particles where internal energy far outweighs inertial energy, for photons, inertial energy is dominant. Even if science admits to a small amount of internal mass in photons, it is their inertial energy that dominates.

I found a good mathematical argument for light mass on Quora by Kyle Lochlann, an academic in relativity theory. Here is the link:

PHOTON MASS

Be sure to read comments to his answer — especially those who find math incomprehensible, which might be nearly everyone who reads my blog. 

After all, Newton’s theory of gravity predicted that the light from stars would deflect near the Sun at only half what Eddington’s experiment clearly showed. Eddington’s eclipse proved Einstein’s theory — the geodesics of spacetime bend in the presence of massive objects like stars.

Many concluded that photons followed the geodesics of spacetime, because photons lacked mass equivalence of any kind. Newton erred about pretty much everything involving gravity and light, some said.  

But their conclusion can’t be right, can it? Doesn’t their conclusion ignore what the math of Einstein’s formulas actually says?



Won’t it make more sense to say that the geodesics of spacetime constrain and overwhelm whatever internal and inertial mass photons might possess?  Doesn’t it make more sense to convert the frequency-related inertial energy of photons to mass to better explain their behavior near objects like the Sun? 

Evidence exists that light-mass is a thing and that it matters. Einstein included a mass-equivalence term for light in his tensors for general relativity. Frank Wilczek, MIT Nobel laureate, is famous for insisting that the mass of anything at all is its energy content. The energy of light is in its frequency, its momentum, which is a measure of its mass. 

It’s true that light does not seem to interact with the Higgs field. Nevertheless, the energy of light seems to interact gravitationally with ordinary matter. The interaction is not measurable when photon numbers are small. When photon numbers are huge, perhaps it is.  

A single photon in the presence of the Sun has no chance. When 10E90 photons saturate a space that is almost entirely devoid of matter, photons can shape a universe — especially when their number is 10 billion times the number of atoms. 

It seems possible, at least to me.

According to data gathered by the NASA WMAP satellite, ordinary matter in the observable universe amounts to a little more than 1/4 of a neutron per cubic meter of space. It amounts to 253.33E6 electron-volts of mass. Everything else WMAP observed was “cold dark matter” and “dark energy”.

How many .05 eV photons does it take to flood a cubic meter of space with enough mass-equivalence to reduce the mass-energy of 1/4 of a neutron to 15% of the total? How many photons are required to sum to 85% of the energy WMAP attributed to “cold dark matter”? It turns out that the number is 34 billion photons per cubic meter. 

The question is: how many photons are there? 

The observable universe has an estimated volume in the neighborhood of 1E80 cubic meters, right? Yes, it might be as much as 4 times that number. 

The lower-bound number of photons in the observable universe is 1E90. It might be ten times more.

It turns out that the number photons per cubic meter in the universe must be somewhere close to 25 billion.  25 is pretty darn close to 34. Since all the numbers are estimates with large margins of error, it’s possible that everything will fall into place as it should if and when the statistics of the universe are ever known with precision.

Could photons of light might be the “cold” dark matter everyone is searching for?

A single neutron has no chance when it is bathed in 136 billion .05 eV photons, which surround and envelop it on all sides from every direction. It makes a kind of quantum scale Custer’s Last Stand for random neutrons, right? 

When scientists look at the universe today, they see an accelerating expansion. They see in the cosmic background radiation photons that have slipped from infrared into longer, less energetic microwave wavelengths which no longer have enough mass-equivalence to hold the universe together.

As light stretches into longer and longer wavelengths through interaction mechanisms such as Compton scattering and other processes (like the push of “dark energy” or the less popular gravitational tug of parallel universes), light frequencies and energies diminish.

Eventually, when the total of all light falls below an average frequency of 12E12, the equivalent mass of the 1E90 primordial photons loses its grip; it becomes unable to hold the universe together.

Near the beginning of time when photons were orders-of-magnitude higher in frequency than now, their stronger gravitationally-equivalent-masses pulled together the structures astronomers study today, like stars and galaxies.



But now scientists seem to be witnessing a runaway expansion of the universe. Light has stretched and dimmed into the microwave and radio-wave frequencies where its mass-equivalence is unable to hold together the universe as it once was.

Because we can’t detect it, isn’t it possible that dark energy and dark matter don’t exist? That is to say, the idea that dark matter and energy are necessary to account for observations is no more than a conjecture made necessary by a misbehaving universe of unusual galaxies. But direct observational evidence for dark matter and energy is the part of the conjecture that is missing. No one has ever seen any.

What astronomers are observing instead is faraway galaxies that existed billions of years ago when the mass-equivalent energy of photons was greater than it is now.

The intact universe of galaxies seen in the night sky today, which is photographed with high-resolution space-borne telescopes, is not up to date in any sense at all, except that it is the view of an ancient past that goes back almost to the beginning of time depending on how deep into space anyone looks.

Everyone who cares about astronomy knows it’s true.

To qualify as a candidate for dark matter means that a photon must have close to one ten-millionth of the mass of an electron. It seems like a reasonable ratio, right?

In the Standard Model, only neutrinos are less massive than electrons. No one knows what the mass of each of the three “flavors” of neutrinos is, but when added they are less than 0.12 eV — about 2.4 times the equivalent-mass of infrared photons and about one four-millionth of the mass of electrons. It seems possible to me that the mass of at least one of the flavors of neutrinos will be less than the conjectured equivalent-mass of an infrared photon packet.

Neutrons and protons are, by contrast, 2,000 times “heavier” than electrons.

I am asking working physicists to reexamine estimates that claim the mass of a photon can be no more than trillions of times less than the mass of an electron.

The claim can be found at the back of articles in science journals as well as in blogs across the internet. For me, the idea seems ridiculous on its face. The energy-equivalent mass of photons varies with frequency, but only the lowest energy radio wave photons can hope to approach the low equivalent-mass estimated in the latest publications.

Scientists might want to revisit the mass of a photon and the methodology of its measurement. The stakes are high, and science doesn’t have many options. Hope — like the energy of ancient photons — is fading.



Science would be served best if scientists started from scratch to reexamine every assumption and lab procedure. The search for dark matter has become an expensive and compulsive quest that seems futile, at least to me. Several costly experiments have reached disappointing dead ends, which are reviewed in the “VICE on HBO” video located near the start of this essay.

What if photons of light really are the dark matter, which is hiding in plain sight waiting to be discovered by anyone who dares to look at the problem with fresh eyes?

What if the delay between the observations of the CMB (cosmic microwave background) and the structure of the universe is a natural disconnect in time and space that misleads folks to believe that mass must be “out there”, when it has in fact long since dissipated?

From another perhaps opposite perspective, what if photons are instead stimulating emissions from virtual particles as they travel at fantastic speeds through the vastness of space? What if these emissions add mass to photons sufficient to bring them to the “dark matter” threshold, as they do in materials like glass?

Such a state of affairs would imply that not all photons travel the same speed in the so-called vacuum of “empty” space. It is a heretical idea, for sure — a can of worms, perhaps to some, but hey! — you can catch a lot of fish with a can of worms.

A photon is a packet of electromagnetic oscillations built-up from many frequencies. Superposition of these frequencies adds to give a photon its characteristic frequency from which its equivalent mass can be calculated. Right?

Use imagination to think of the many ways a higher “speed limit” that is mandated by the existence of massive photons might work to stimulate the interest of a space-traveling civilization to explore the universe, which ordinary folks begin to understand is more accessible, more reachable than anyone thought possible.

Consider the number of inexplicable phenomena that would make sense if particles thought to have zero internal mass don’t really exist, and photons, gluons, gravitons, and Higgs bosons aren’t the only ones.

Recalibration might save a lot of time and effort in the search for the putative missing energy and mass of the universe.

Should “dark” particles exist whose internal mass is less than that of photons, they will likely move at superluminal speeds that make them difficult to track. To influence stars, their number would have to dwarf photons. Such an idea strains credulity.

A counterproposal by Roger Penrose speculates that dark matter particles might have the mass of the eye of a flea; he calls them “erebons.” These particles are electromagnetically invisible, but their huge masses relative to other particles in the Standard Model make them gravitationally compelling.

Erebons decay; evidence for their decay should be showing up in data collected by LIGO detectors.

So far persuasive evidence for erebons has not been found.



For scientists and explorers, the access-barrier to a universe shaped and configured by massive photons will most certainly shrink — perhaps thousands to millions of times.

The stars and galaxies that people believed were unreachable might finally fall within our grasp.

Or — perhaps less optimistically and more cynically — the mass-equivalent energy of 1E90 photons might by now be so severely degraded that nothing can save a universe that has already come undone and flown away into an abyss that humans will never see.

The radiation-evidence from a catastrophe of disintegrating galaxies that has already occurred won’t reach Earth-bound viewers for perhaps billions of years.

Should humans survive, our progeny — many millions or billions of years from now — may “see” in the vastness of space a cold and diminished radio-wave radiation that hums in a soul-less vacuum devoid of galaxies and visible light.  Microwave light will by then be nothing more than a higher-pitched, prehistoric memory.

Roger Penrose says that the fluid dynamics of an exhausted universe devoid of matter will become indistinguishable from the singularity that gave its start. A new universe will ignite from the massless, radiation-ashes of the old.

The idea is called Conformal Cyclic Cosmology — or CCC

Human-nature forces us to want to know more; most folks want to search for and find the answers to the questions that will determine the fate of all life on Earth and in the vast stretches of spacetime that remain beyond our reach.

Is the universe within our grasp, or has it already disintegrated?

We search for truth to set ourselves free.

Billy Lee

12 ASSERTIONS

I have hope that someday readers will visit Quora.com to look up meBilly Lee — to read my answers to hundreds — perhaps one day thousands — of questions asked by every kind of curious person from every part of the world.

I love to read and think about questions from unmet others — to encounter oddities that have never occurred to me to ask or answer.

It’s humbling to be confronted by the knowledge that not only do I not know the answers to thousands of questions, but I lack the breadth of mind to even imagine such questions; I am convicted by my own lack of curiosity and inability to think deeply about an almost infinite number of mysteries that other people of all types and backgrounds wonder about and seek to understand.

Hundreds of years ago, polymaths — the smartest and most energetic of them, anyway — could know and understand all that humankind ever dreamed. Today, the world is too complex; the depth of knowledge required to understand a narrow subject — like juice-carton safety-caps (I hold a patent) — takes years, maybe decades, to acquire.

Is it any wonder that smart people give up and go stupid?

No matter how much a Doctor of Philosophy knows about the rules of logic, he’s a dummy to every certified automobile mechanic he will ever meet — and vice-versa, right?

A way out of the dilemma is to practice the art of pontification. I pontificate based on a lifetime of experience; and reading; and wandering the world; and poking around in my backyard — to ponder why things are the way they seem to be.

Je connais beaucoup de merde, and I know a lot of nothing. When I write it down, well, magic happens. Resonate rings of truth rise which when later read render me reeling.

I’m unsure where-from the magic comes. It seems to fall from heaven to light the world. I’m driven to share with souls known only to God, because I have no way to know who reads my blog. I know only that some folks make the time, because WordPress stats say it’s so.

One of the things on Quora.com that seems to confuse a lot of people is the difference between momentum — a measure of the mass of an object multiplied by its velocity in a particular direction — and kinetic energy, which is a measure of the energy of an object that has been accelerated for a period of time in a particular direction, which enables it to do work.

Momentum is an object’s mass times its velocity; it is a measure of its inertia along a defined direction. It is measured in newton-seconds.

Kinetic energy is released by an object in units of acceleration that were initially induced by newtons of force. It is equal to half the quantity that is calculated by multiplying an object’s mass by its velocity squared. It is measured in units called joules, which are newton-meters.

Of course, spinning objects that aren’t moving in any direction have momentum and kinetic energy, too. The two are wrapped together in a concept called, torque.

Dear God, help me.

Now, I’m confused. Somebody, please, explain to me. I thought I understood until I started writing.  I did.  Really.

Another source of confusion concerns the nature of photons, which are tiny packets of oscillating electric and magnetic energy — from which light is made, right?

Photons seem to have no mass in the vacuum of space. When they pass through a material like glass, they leave a wake of disrupted electrons in the glass which belch out polaritons. These particles add mass to the photons and slow them down by as much as forty percent.

Polaritons can be described as light-matter waves

Does anyone believe it?

It’s God’s honest truth.

When photons exit the glass and enter the vacuum of space they leave the polaritons behind, lose their acquired mass, and jump to light speed, instantaneously.

Who knows for sure that it’s true?

Who understands why?

Here is an interesting thought:  if humans — limited in understanding by language and mathematics  — are unable to ever know why photons exist and behave as they appear to do, then who can? Who does understand?

Is all the complexity of the universe understood by no one? Is it possible that an unlikely universe can exist forever whose fundamentals cannot be articulated and which lies outside the experience and ability to comprehend of any sentient life-form whatever, whenever, wherever?

What kind of place do we live in, anyway?

Calm down. Take a breath.

Reality may not be as hopelessly inaccessible as it seems. Can it?

Here are some questions, which I’ve answered as truthfully as I know how. The answers are assertions of truth.


1 – How did a single cell organism eventually lead to complex life on earth, and does that mean that all life has a common ancestor (the single cell)?

This one is the 64-million-dollar question that no one has ever answered convincingly. Prokaryotic cells were established 3.5 billion years ago on the early Earth. They evolved to become the bacteria and archaea branches in the tree of life that exist to this day.

Here is the amazing part, at least for me:  Eukaryotic cells, which are the much larger and more tightly organized cells of all animals and plants, did not emerge until two billion years after prokaryotes. It took a long time to evolve cells capable of conjugating into more complex life.

For the past 1.5 billion years eukaryotic cells have evolved into life forms capable of civilization and space exploration. The time frame is amazingly long.

The thought that a lunatic could in a moment of bad judgment start a cascade of events that extinguishes all life is troubling.

When astronomers look into space they see no signatures of life as advanced as ours. Again, this is troubling, because it might be an indicator that the knowledge possessed by advanced life-forms may approach some asymptotic limit where self-annihilation becomes inevitable.

NO CODE

RISK


2 -What evidence would falsify the theory of evolution?

No one knows all the myriad ways that life evolves, only that it does. That life evolved from cells that were fully functional 3.5 billion years ago is an established fact, because of evidence found in rocks.

Scientists know that it took two billion years for these ancient cells to evolve into the much larger and more tightly organized eukaryotic cells that today are the foundational structures of all animals and plants.

No one knows how life as complex as cells was established on a hostile planet like the early Earth, but everyone has an opinion; these opinions are called conjectures and theories.

One scientist might say that life started on Mars and was transferred to Earth on space debris uplifted by a cataclysm on Mars. Another says no; all the stuff necessary to make prokaryotic (primitive) cells existed in abundance on a young Earth — perhaps near hot vents in the ocean floor. Other geologists say the earth was bone dry at one billion years. Oceans came later, so just what the heck does anyone know for sure, anyway?

Many conjectures purport to explain how life changed from unicellular eukaryotic forms 1.5 billion years ago into the space-exploring civilizations of today. Every conjecture thus far has already been falsified either by evidence or by competing conjectures that make as much sense but are different.

For example: some say mutations in DNA drive evolution. The problem is that mutations are too rare. Some say an eco-sphere of processes driven by a halo of molecules that cling to DNA drives evolution. They call it epigenetics. Others say, no. RNA drives evolution like colonies of intelligent ants who build hives. There are other explanations.



None are verifiable or generally accepted due to an insufficient body of proof that is able to overcome alternative ideas that are equally compelling.

Another problem is that no one knows if DNA life is all there is. DNA is a molecule that cannot be seen or worked with until it is amplified into a viewable goo.

Are there other undiscovered molecules no one knows how to amplify?

Understanding of the parameters and limits of life is incomplete and may perhaps mislead researchers. Humans might not yet know enough to figure out the dynamics of genomes. More needs to be discovered and understood.

Is there a shadow biosphere that is in a symbiotic relationship with DNA? Where is the dark DNA that biologists can’t find that is necessary to code for many of the proteins they know exist?

How were cells themselves established so quickly on Earth? It’s a question whose answer is discussed by countless experts and non-experts; no answer fully satisfies.

Darwin’s ideas about natural selection and survival of the fittest have their place. But he was just getting started, and he died a long time ago. Scientists have a lot of work left to do.

NO CODE


3 – Which Bible story is most objectionable when looked at in the context of modern morality?

All Scripture is God-breathed. To love and be loved by both God and people is why we were born; it’s what makes life precious and worth living. No one wants to die; no one wants to be hated.

The sad part is that everyone suffers; everyone is hated by someone; everyone hates someone; everyone dies after a life of blunders and sin. Christ Jesus came to save the lost, which by the looks of this thread is pretty much everyone.

We have hope. It’s something to hold onto as we grow weak and find ourselves ruined at the end of our minutes in the sun on our beloved Earth.

Jesus made a path for us. It cost him everything a human can pay. He somehow survived the Roman crucifixion that killed him to show the poor and overly burdened that in his power is the way, the truth, and the life.

There is a path to paradise; we — everyone of us — can find it by surrendering to the God who loved us, gave us life, and suffered to set right what we put wrong.

JESUS, THE CHRIST


4 – People say Newton’s third law, “For every action, there is an equal and opposite reaction,” is not accurate. Is it true?

Einstein said that only mass and energy exist; they are in fact equivalent; they are the same thing; two sides of the same coin. Energy gives rise to all other phenomenon and forces that scientists observe.

Stephen Hawking said that when mass (or energy) comes into existence a negative energy must emerge to balance it so that when added up everything in the universe sums to zero. It appears that Newton’s third law, equal and opposite, is not only accurate — it is a fundamental balancing principle that undergirds existence.

Mass is matter, which can be positive or negative and is referred to as matter or anti-matter.

The Billy Lee Conjecture claims that mass is pixelated (quantized) such that in the contest of emergence within the smallest spherical volume, matter or anti-matter (one or the other) will prevail due to a natural truncation of π in the putative spherical volume of the creation space.

An evenly divided ratio of matter and anti-matter within a spherical creation-space is physically impossible if π is truncated by pixelization. Matter and anti-matter will annihilate until a single piece of either matter or anti-matter remains after the creation event.

To maintain a zero-sum, balancing counter-energy will emerge according to speculation by the late Stephen Hawking.

Over long periods it seems that an extraordinary amount of matter has accumulated inside our own universe by surviving the natural annihilation of matter by anti-matter. This matter seems to have generated an enormous amount of counter-balancing energy — some of which Newton called gravity. Most of the energy remains undiscovered and is referred to as “dark.”

In our own universe, π seems to “round-off” near the precision of the Planck constant.

In universes outside our own — some of which seem to be pulling our universe apart in an accelerating expansion caused, perhaps, by their own gravitational forces — π may truncate to different values to generate in some cases a prevailing anti-matter and opposing energies that manifest qualities different from the energies found in our own universe.

If parallel universes disrupt the zero-sum strategy of our own, it may still be true that the principle of zero-sum or equal but opposite is operational, but humans are too small and the distances are too far for anyone to ever know for sure that it is true.

CONSCIOUS LIFE


5 – What are the major foreign policy issues that the United States of America is working on in 2018?

I’m writing this answer just after the meeting in Singapore between North Korea and the United States involving the Korean nuclear arsenal.

The Secretary of State, Pompeo, said yesterday that NK has two years to de-nuke. This delay might tempt the Japanese to convert their stockpile of 47 tons of plutonium into bombs. Japan and North Korea have issues related to the Japanese occupation of Korea from 1910 to 1945.

It takes ten pounds to make one bomb. The Japanese can make as many bombs as they want in as little as 24 hours.

A Japan armed with 10,000 nuclear bombs (they already have the missiles to launch them) is a clear and present danger to China, Russia, and Korea — not to mention the United States with whom Japan has a beef that goes all the way back to World War Two when the USA destroyed 67 of their cities with napalm; two cities by atomic bombs.

The USA has occupied Japan ever since. Some of the Japanese probably hate us — who knows for sure?

47 TONS

MKWA


6 – Can a photon’s speed be slowed down? I have heard that it can be slowed by a medium, but I have also heard that it is just the velocity being slowed as it “bounces” from particle to particle? I am not talking about Bose-Einstein condensation.

The current thinking is this: when a photon leaves the vacuum to enter a material object, it leaves a wake in its path that vibrates electrons in the medium. These oscillating (or disturbed) electrons generate polaritons, which are photon-like objects that can catch and add mass to the photon. With mass added, the photon slows down — as much as 40% in glass, for example, which enables more polaritons to pile on.

When the photon exits into the vacuum of space, it disentangles from the polaritons, and instantly resumes light speed.

I didn’t make this up.

It’s what some physicists are saying, and it explains a lot and leaves a lot unexplained — like all things physics when folks go just a little deeper into the abyss of understanding.



7 – What is the relation between light and darkness? Can one exist without the other?

Light is the action of certain wavelengths of electromagnetic radiation on structures in the eye, which trigger hallucinations in the brain that humans report as “light.”

An infinite range of frequencies are “out there.” Humans are blind to almost all of them. People who are unable to trigger hallucinations induced by electromagnetic radiation say that they are experiencing “darkness.”

Some frequencies of light are experienced as “heat.” Because the sensation is not accompanied by visual cues, people in hot rooms with no windows believe they are experiencing “darkness.”

The experience of heat is caused by the same electromagnetic waves that induce visual experience, but they are a tiny bit longer in length than those which induce the experience of the color “red” in humans.

The longer waves carry less energy and are invisible to people unless they view the ”infra-red” light through high-tech sensors. Local fire-departments use these sensors to identify ”hotspots” where fires might reignite.

SENSING THE UNIVERSE

WHY SOMETHING, NOT NOTHING?


8 – Given an opportunity to pass through one or two slits with no detection, will a quantum object always pass through both?

If the slits are in the right position and are cut to the right size and are at the right distance from the source, a pattern on a detector screen will evolve over time to look as if waves are passing through the slits and interfering in a predictable way with each other.

Of course, it’s not true, because the particles are shot one at a time and the duration of the experiment can be hours to weeks long. The shots land one dot at a time. After thousands of shots, a pattern that resembles what one would expect of waves interfering is formed by the particles as they accumulate on the detector backstop.

No one knows why. The phenomenon is inexplicable.

BELL’S INEQUALITY


9 – Is Jesus a hoax? Jesus has not walked on Earth in 2,000 years. How can a man 2,000 years ago save anyone?

I was hungry and you gave me something to eat, I was thirsty and you gave me something to drink, I was a stranger and you invited me in,
I needed clothes and you clothed me, I was sick and you looked after me, I was in prison and you came to visit me.

The righteous will say, ‘Lord when did we do these things?’

My answer will be, ‘Everything you did to help suffering people, you did for me.’

The preceding is a paraphrase of part of Matthew 25, a book in the Bible.

Read it. Why not?

The answer is in the sense that it is not a hoax that the “least of these” walk the earth when we do. How we treat unfortunates is, in the view of Jesus, the way we treat him. He will return to us the same courtesies when finally we give GOD an account of our lives.

JESUS, THE CHRIST


10 – Can RNA or DNA think?

RNA, in its many forms, behaves like ant colonies which swarm over the DNA pile to do a number of tasks that seem to involve a lot of decision making.

RNA selects out of billions of bases a few thousand which it strings together to make “genes” that it transfers to ribosomes — which are made almost entirely of RNA and are among the oldest structures in cells.

At a ribosome, the genes are coupled to RNA that carries amino acids; the amino acids are then ejected from the ribosome to be strung together like necklace beads; they are transported to Golgi structures where they are folded into proteins.

A process this complex — and it’s actually far more complex than this summary implies — can be orchestrated without intelligence; it’s possible, but without intelligence of some form, the process seems, at least to me, to border on the miraculous.

After all, what is the result?

It is a conscious thinking life-form who can, in cooperation with others, figure out its own origins.

It’s amazing, right?

NO CODE


11 – How do Quantum spins get affected by Quantum entanglement?

All atoms with electron shells that are home to more than one electron have entangled electrons. The spins tend to oppose each other. With bosonic particles, down conversion techniques produce photons that have opposite polarization.



Most physicists think that spin is induced during measurement; the spin is transmitted oppositely to the entangled partner instantly — no matter how far separated.

For this reason, a pair of entangled particles can be envisioned as a single particle that behaves as if one of its dimensions (the distance between its endpoints) is missing.

The distance between the entangled pair behaves as if it is zero — when it is known to be non-zero.

BELL’S INEQUALITY

QUANTUM ENTANGLEMENT


12 – What is the viability of colonies on other planets?

The two planets closest to Earth are the most viable places for colonies simply because they are the easiest to resupply. They are Mars and Venus.

Neither can sustain colonies, because they lack magnetospheres, which are essential for deflecting high energy particles emitted by the Sun (called the solar wind). These particles are deadly to life. The molten iron-nickel cores of Mars and Venus froze millions of years ago on both planets, which collapsed their magnetospheres.

Venus has a highly toxic atmosphere, which is another reason to rule out colonization there.

Beyond Mars are gas giants. Only their rocky moons are candidates for human colonies. All the moons appear to be too cold to operate the machinery necessary to sustain human life. Most lack protection from the solar wind.

FINDING LIFE IN THE UNIVERSE


Bonus Assertion – Does a photon consist of (f) quantized energy packets each of (h) joules?

A photon seems to be a packet of vibrating electric and magnetic energy, each part of which exerts its energy at a right angle to the other. The energy in the packet is proportional to vibrational frequency alone. A photon has no mass or acceleration. It travels along at a constant speed in space-time. The electric portion of the energy is about seven times the energy of the magnetic portion.

Photons can become more intense (that is, brighter) when they pile up. Pile ups don’t happen to electrons, protons, and neutrons because they obey an exclusion principle that forbids them from occupying the same space at the same time.

Photons can pile up, but their intensity (or energy) can only be transferred into electrons that are in an energy state that resonates with the frequency of the incoming photons. Non-resonate electrons ignore un-matched photons, so photons pass through non-resonate electrons unimpeded.

The energy of an individual photon can be expressed as its kinetic energy and  shown to equal Planck’s constant times the photon’s frequency, which always results in a very small number.

When expressed in terms of its wavelength (λ), photon energy equals the Planck constant (h) times the speed of light (c) divided by the wavelength (λ) of the photon. Notice that the mass term is missing due to a simple manipulation of the relevant equations — which anyone who is interested can find in the following link.

PHOTON

Momentum might not be an appropriate metric for a force carrying boson like a photon, because momentum is based on mass, which many physicists say photons in a vacuum don’t possess.

Another reason momentum could be an inappropriate metric is that the velocity of photons in a vacuum is independent of any reference frame, right? Momentum is a vector quantity that is always measured in relationship to a particular reference frame or the momentum of another particle.

There is a theory that claims that photons pick up mass when they pass through materials like glass. They seem to leave a wake that shakes up electrons in the material. The vibrating electrons release polaritons, which by a mechanism analogous to superposition add mass to the photon and slow it down. When the photon exits and returns to vacuum, it sheds the polaritons, becomes massless, and returns to light speed instantly.

Perhaps photons in the vacuum of space acquire mass by interacting with virtual particles that emit virtual polaritons.  Notions about the nature of the universe would be changed radically if such a notion were confirmed by evidence.

Because h and c are constants, they can be multiplied together to give a constant that is very close to 2E-25. Dividing 2E-25 by the wavelength of a photon will give its energy in joules. Of course, all units are SI, which stands for standard international units, correct?

Since E = hf or (hc / λ) , the energy is always a multiple of h, which is the Planck constant. The word “multiple” is a simple way to say “quantized”.

So, the energy of a photon bunch or pile can be expressed as a multiple of the number of photons of a certain wavelength in that bunch. The energy in each individual photon is its wavelength (or frequency, if you like) multiplied by the Planck number — a constant equal to 6.626E-34.

It takes a pile-up — or bunch — of about 7 photons with wavelengths close to 2.5 one-hundred-thousandths of an inch long (635 nanometers) to carry enough energy to light up the sensors in a human eye.

How much energy is in those seven photons? It is seven times 2E-25 / 635E-9 —  in joules, right?

It’s 2.2E-18 joules. Converted to an easier metric befitting its scale, the energy is nearly 14 electron volts, which is equivalent to the energy held in 14 electrons.

People say that photons with wavelengths that measure 635 nanometers create the color yellow-orange in their minds.

SENSING THE UNIVERSE


Billy Lee