ON THE VERY SMALL

I hope by now you’ve read my article, Scale.  It hints at something odd about the Universe.


Saturn back-lit by the Sun. Earth is the tiny dot inside the artist’s circle to the left of the gas giant. In this pic Earth is 900 million miles or so into the page behind Saturn. Click pic to enlarge in new window.

When looking up into the night sky people sense the vast distances between the objects they see. But when looking down at the ground they experience something different. It seems that objects are solid, without internal structure.

No one can know by looking that solid objects are made of tiny molecules separated from each other by tiny gaps. Even sophisticated instruments like microscopes provide experimenters with no chance of seeing any molecules. Molecules are too small.


This algae is a single cell composed of many billions of molecules.

Think about it. No one has ever seen a molecule. 

No one.

Computers have created pictures based on programming rules and data from sensors to provide an idea of what molecules might look like — if molecules lived in the world at human scales and reacted to sensors and probes the way people do. But, of course, they don’t.


porin molecule occuring in cell membranes
Model of a single porin molecule.  These molecules stack to create tunnels for passage of smaller molecules through cell membranes.  Each molecule is made from hundreds of atoms.

Few professors emphasize to kids in freshman chemistry, as far as I know, that they are learning the rules from models of molecules which have been invented — fabricated — to help make sense of lab experiments done on substances that are able to be touched by hands and seen with unaided eyes.

Worse, visual models can never be realistic when applied to the objects scientists call atoms. Atoms are what molecules are made from. They must be completely fanciful. It’s true. Scanning tunneling microscopes (STMs) have been used since 1981 to “feel” the forces of atoms with “nano” probes. Based on plots of these forces, pictures of atoms that look like stacked billiard balls are generated by computer algorithms.

Whatever it is that atoms are, they aren’t resolvable with light, which is what brains use to view and imagine things. The constituents of atoms are quantum objects that don’t behave like anything familiar to ordinary life. Everything folks think they know about atoms is made-up by scientists who are struggling to make sense of the way substances behave under every set of experimental circumstances imaginable.


pentacene molecule
Atomic Force Microscopy (AFM) provided data to an IBM computer, which constructed this image of a benzene molecule. This technology cannot resolve the structure of the individual atoms, which impart to the molecule its geometric shape and electrical properties.

Scientists have invented models of atoms, which are made from protons, neutrons and electrons (that whirl inside s, p, d,  f & g orbitals) — whatever — to aid their thinking. No one examines an atom to see if it looks like its model, because they can’t.

Whatever it is scientists are modeling can’t be seen by eyes or microscopes. If the model helps scientists predict what will happen in experiments, they are OK with it. Physicist Stephen Hawking calls it model-dependent realism. The models are good enough.


Quarks
Artist rendering of quarks. It is impossible to see quarks or to know what they really are. They were invented by physicists to help make sense of experiments done in particle colliders, which show that protons, for example, cannot be fundamental, but must have (thus far) unobservable internal structures, which in the case of protons are most realistically modeled by two ”up” quarks and one ”down”. Quarks have color as well, to help explain their interactions with gluons — which carry the ”strong force”.  

During the past fifty years or so experiments have revealed new layers of complexity, which older models of the atom don’t address. So scientists have devised new models to help them reason more clearly about the strange events they were observing.

Scientists invented more structures and more “particles” — quarks being the best known — to explain and simplify the fantastic results of recent experiments.

Before the idea of the quark, scientists struggled with the complexity of a theory that included hundreds of particles. Frustrated physicists referred to the complexity as the “particle zoo.” After the theory of quarks was accepted, the number of particles in the “standard model” dropped to seventeen.


molecular and optical physics
Periodic optical lattice potentials for atoms. At a certain ‘magic wavelength’ of the trapping light one finds identical polarizabilities for ground state atoms and Rydberg atoms (see the inset), such that the trapping strength no longer depends on the internal atomic state. (Excuse me, but anyone who understands what they just read is a genius, a mad scientist, or both.)

Some current models of the subatomic world postulate point-size masses immersed in vast volumes of interstitial space. These models reflect the mathematics used to build them, but are probably not helpful for understanding what is really going on.

John Wheeler, the theoretical physicist who coined the terms worm-hole and quantum-foam, said this about the very small:  …every item of the physical world has at bottom — a very deep bottom, in most instances — an immaterial source and explanation…

At the smallest scale anyone can realistically work with — the scale of molecules — the structure of matter is dense. The space between molecules in a lattice is not much larger than the size of the molecules.

The force fields inside the molecular lattice are powerful — powerful enough to make the lattice impermeable. Vast volumes of empty space don’t exist within. Matter and energy seem to be working together in a kind of soup of symbiotic equivalence.


Atlas particle detector at CERN
Atlas particle detector at CERN. See human inside for scale. Are they kidding? This monster machine detects so-called ”particles” that cannot be seen by humans, even with microscopes.

It might be reasonable to expect that at smaller scales, forces and fields take over. Matter, as folks usually think of it, is gone. Fields (whatever they might really be) predominate. When fields interact with detectors, the detectors provide data as if they interacted with massive particles immersed in vast volumes of empty space.

It might be an illusion that leads people to miss an underlying reality of smaller scales — descent into the abyss of small scales reveals regions of disproportionately less space, not more. The stairway to smaller scales may lead to densities of force/energy and limitations of space/time like those found in black holes.  

In a typical black hole — a hundred million may inhabit the Milky Way Galaxy — a typical event horizon might have a circumference of thirty miles. Its diameter could measure millions of miles. Dimensions like these violate the Euclidean rules of geometry everyone expects. According to the rules, a spheroidal event horizon with a thirty mile circumference can’t measure more than ten miles across.

A diameter of millions of miles for an object with a thirty mile circumference seems crazy at first, until the implications of relativity are examined, which demand that the volume of space and span of time within a black hole be densely distorted and wildly warped.

A black hole contains within its volume the energy-equivalent of all the matter of the collapsed and vanished star that formed it plus all the energy-equivalent of any other matter that may have fallen into it. It is a region mostly devoid of matter — it is energy rich but matter impoverished — analogous perhaps to those tiny spaces some think might exist within and between atoms and inside the sub-atomic realms of ordinary matter.

Said plainly, whatever exists at tiny scales is not understood, but maybe knowledge about black holes can provide insights. I think so. The problem: knowledge about black holes is speculation based on mathematics; unless we are already living inside a black hole, no one can experimentally verify the ideas of smart and talented people like Stephen Hawking, for example.

The problem of understanding the very small is serious. The most advanced particle detector humans can afford to build blows up protons to examine their debris field. The detector “looks at” debris that measures about 1/100th the size of the protons it smashes. Accelerators — like the one at CERN — can’t “see” anything smaller.

From these tiny pieces of accelerator-trash theories of nature are fashioned. The inability to resolve the super small stuff is a problem. No one can see quarks, for example. Scientists at the ALICE Lab at CERN hope to fashion a “work around” by using the nuclei of iron atoms to make progress in the coming years.

To examine debris at Planck scales — which would answer everyone’s questions — requires a resolution many trillions of times greater than CERN can deliver. Such a machine would have to be much larger than the one at CERN. It would have to be larger than the solar system. In fact, it would have to be larger than the Milky Way Galaxy. Even then, the uncertainty principle guarantees that such a machine could not remove all the quantum fuzziness from whatever images it might create.


Nema Arkani-Hamed
Nima Arkani-Hamed, theoretical physicist, born April 5, 1972

According to IAS theoretical physicist, Nima Arkani-Hamed, it might be possible to burrow down to an understanding of the very small by using pure thought — as long as it is consistent with the mathematics that is already known for sure about quantum physics and relativity theory. The problem is, no one will ever be able to confirm the new models by doing an experiment.

The good news, Nema says, is that constraints imposed by knowledge already confirmed may so reduce the number of paths to truth that somebody might find a way that is unique, sufficient, and exclusive. If so, folks can have confidence in it, though experimental verification may lie well beyond the reach of technology.

But again, fundamental problems — like trying to observe an intact, whole atom — remain. No technology of any kind exists that will permit anyone to observe an entire atom at once and resolve its parts.

Physicists are reduced to using what they learn from observing atomic-scale debris to help fashion, in their imaginations, what such an entity might “look” like. No one will ever have the holistic satisfaction of holding an atom in their experimental hands, observing it, and pushing on its quantum-endowed components to see what happens.


alchemy
Artist rendering of an alchemy research laboratory.

Where does it all lead? At this stage in its history, science is struggling to figure out what’s happening. 

In the USA, (where the big money is) science seems to serve the military and companies struggling to create products that capture the imagination and pocketbooks of a buying public. For the moment at least, science is preoccupied with serving better those who pay for its services.

But someday — hopefully soon — scientists may refocus their considerable talents on the questions that really matter most to people:

Where are we?  What, exactly, is this place? Is anyone in charge?  

Billy Lee

SENSING THE UNIVERSE

Everything people know about the Universe comes from sensing it or from scientific inquiry. The two methods seem to be different.



What exactly is the universe?

Sensing involves seeing, hearing, feeling, smelling, and tasting, right? It’s the traditional five senses that most folks learned about in elementary school a long time ago.

Scientists added complexity to the number and capabilities of the senses in modern times to include “modalities” like sense of place, pain, balance, temperature, vibration, and awareness of chemical concentrations — like salt and carbon dioxide— inside the body.

All this complexity pushes readers into deep weeds, which I am going to avoid in this essay. It will work just as well not to needlessly bewilder people.

Never mind that certain life forms like birds can sense the earth’s magnetic field, or that sharks can sense the electrical activity in living prey. Many ways of sensing the universe are possible. This essay deals with those most familiar to humans.

Until humans developed the technologies of modern science,  sensing (and making sense of what was sensed through the mental process of reasoning) was how people formed ideas about what the universe is. But there was a big problem.

Senses told us the sun looked yellow, thunder sounded loud, rocks felt hard, roses smelled sweet, and almonds tasted bitter.

The problem should now be obvious.

These qualities don’t exist in the universe. They are hallucinations of brains created when organs like the eye, ear, skin, nose, and tongue interact with elements of the universe which, in themselves, share none of these qualities.


sensing the universe 8
Qualities like these don’t exist in the physical universe. They are hallucinations of living brains.

These hallucinations are inaccessible to all but the living organism who experiences them. They are unique and not detectable by others, in this sense: people can ask others if they see the same yellow color they see. When they say yes, they can decide to take them at their word, or not.

It is not possible to prove that they are telling the truth. In fact it’s not possible for anyone to answer truthfully, because no one can know how anyone but themself experiences the color yellow.

The interaction of sense organs, like eyes, with electromagnetic radiation is selective. Only a limited range of frequencies will stimulate the retina of the eye, for example, to emit the necessary electric and chemical messaging the brain uses to construct the hallucination called vision.

Some of the radiation falling into the eye does not interact with any sensing organ and remains undetected. In fact, the human eye can detect only wavelengths of light between 15 and 35 millionths of an inch long (400 to 900 nanometers).

Note to the non-technical : A nanometer is a billionth of a meter, which is written as a decimal point followed by eight zeroes and a one — i.e. .000000001.  In engineering shorthand it’s written as 1E-9 meters. Humans see wavelengths of light that are 400 to 900 times longer. Scientists and engineers usually work in meters, not inches.  The Editorial Board. 

This narrow range is transformed by structures in the retina into messaging the brain can use. Wavelengths up to a thousand times longer (one thirty-second of an inch) are able to be felt as heat.

To the rest of the light spectrum, humans are completely blind. This spectrum includes light with wavelengths as long as sixty miles (called radio waves) down to wavelengths of light called gamma rays, which are many millions of times smaller than the wavelength of violet, the shortest wavelength human eyes can detect.

One reason people (and other life) see and feel a limited range of frequencies is because the energy of the sun that is able to penetrate Earth’s atmosphere to reach its surface lies in this limited band. The rest is blocked.

Of the sun’s energy that is able to reach Earth’s surface, 43% is in the narrow visible spectrum people can see. 49% is in the form of heat, which can be felt. Ultra-violet light — which some insects see — makes up 7%. Life on Earth evolved to sense light at wavelengths able to reach its surface.

The other parts of the light spectrum — like X-ray and gamma light — are deflected or absorbed by the nitrogen and oxygen in the atmosphere. Only 1% of the sun’s energy that manages to reach Earth’s surface lies in these high frequency bands.

A great deal of the light that reaches Earth from outside the solar system falls into the range of low-energy radio frequencies to which all Earth-life is completely blind. Radio-frequency light-waves are long and fuzzy. The sun produces mostly higher frequency light. Radio-waves seem to be unnecessary to the survival of life on Earth.

An ability to sense radio waves makes no impact on living things; it provides no survival advantages. Yes, on Earth intelligent life-forms (i.e. humans) have learned to amplify and convert radio light into sound to communicate and entertain themselves over large distances.

Scientists continue to search for evidence that far away life, should it exist, might share the same aptitude for communication. So far, the search has found nothing — no evidence for any kind of life whatever.

The image of light formed by the mind is fantastic — which means it is useful to the organism that sees the image, but the image doesn’t contain many (or any) clues about the external physical phenomenon that triggered its creation.


sensing the universe 7
There is nothing even remotely similar between the color yellow (or any other color) and the electromagnetic radiation that oscillates trillions of times per second to ignite the mechanisms of vision.

There is nothing even remotely similar between the color yellow (or any other color) and electromagnetic radiation oscillating trillions of times per second.

The hard solid feeling of rock has nothing in common with the silicon atoms from which rock is made and whose nuclei are separated from one another by spaces many thousands of times their size. Nor does it have anything in common with the hundreds of different molecules which make up the nearby skin and nerve cells — themselves many millions of times larger than silicon atoms and separated from them by large distances.

The feeling of hard solid and the color yellow exist in my mind. I am sure of it. But can I find, for example, the color yellow in your mind?

The answer is no. A brain surgeon might probe a part of someone’s brain, and they report seeing yellow. But if she examines the area of the probe, she has no chance of discovering the color yellow. She will never find it.


Professor Daniel Robinson (1938-2018) University of Oxford.
Watch from 11:04 to 13:20.


My experience with the color yellow is subjective. If you tell me you also experience yellow, I believe you, because you are like me, and it seems reasonable that we will experience things in the same way.

But if you were asked to prove you see yellow the way I see it, you couldn’t do it.


sensing the universe 9
Not only colors, but sounds, feelings, smells and tastes will vanish without a trace once life is gone. So again, the question: What, exactly, is the Universe?

If life disappears from the universe it will take the color yellow with it. Only the electromagnetic radiation that triggered the hallucination of the color yellow will remain.

Since the radiation can no longer be detected, seen, or experienced by any conscious observer, what is it exactly? Not only colors, but sounds, feelings, smells, and tastes will vanish without a trace once life is gone.

So again, I ask: What exactly is the universe?


gas sensor
                      Gas Sensor

Let’s “look” at scientific inquiry for the answer. What does science do? Science examines the universe quantitatively and avoids the qualitative and subjective attributes the senses provide. Or it at least tries to.

Science designs detectors to find as much discoverable phenomenon as it can — phenomenon human biological senses can’t discern or aren’t sensitive enough to experience.

But someone has to ask: Aren’t these detectors nothing more than enhanced sensors augmented by gauges and dials to increase the precision of measurement? And don’t living, conscious human-beings use their senses and their brains to make sense of the information the detectors provide? What has anyone gained by science?

The scientist’s tool of choice is mathematics, because it dramatically reduces the fuzziness — the subjectivity — of the senses, and replaces qualities like the color yellow and the feeling hard solid with measurables like oscillations per second and pounds per square inch; that is, with attributes that can be measured by all observers and which, presumably, exist independently of a conscious mind.

Can mathematics really do that?


Special relativity Einstein
The Special Relativity of time.

Mathematics uses logic and simplified representations of objects and forces to create symbolic models. Certain operations can be performed on these models to reveal non-intuitive relationships among the simplified variables.

Ok… again, have we gained anything? Or does mathematics force a sacrifice of information and detail to simplify understanding? Are we closer to knowing what the universe is, or farther away? Can the best sensors and the most sophisticated mathematics really get humans closer to understanding what the universe is?

One surprise that mathematics has revealed: telescopes and other sensors show that too much gravity is at work in the universe for the amount of matter and energy scientists see. 85% of the matter that must be out there can’t be seen.

More shocking: 95% of the energy and matter that the theory of gravity says must be out there, no one has ever observed. Physicists don’t know what this invisible matter and energy is, or even where it is — though some scientists believe it is evenly distributed throughout the cosmos. They call it dark matter and dark energy.

I don’t want to scare anyone, but the universe is mysterious, and no one understands it. Two questions I’m grappling with:

1 – Can the Universe exist apart from Consciousness?

2 – Is Consciousness powerless to interact with the universe in ways that change it?


sensing the universe 4
Consciousness may exist independently of any individual conscious-being.

These are serious questions.

If the answers to these questions are yes, then consciousness is not necessary for the universe to exist, and the understanding of what the universe really is will probably never be complete — certainly not for humans. Consciousness is something that evolved over billions of years and will someday be missing once again.

The universe won’t notice or care. Conscious life — like humans — can think about the universe all they want. They will never change it. This is the current popular view, is it not?

But the answers to these questions could be no. And it might be possible to prove it. 


universe outer space
Consciousness might be something human beings plug into and even share.

If the answers turn out to be no, the implications are profound.

No means the physical universe may have evolved from consciousness, not the other way around.

No means conscious humans may have the ability to completely understand the universe and make sense of it someday.

No means that consciousness may exist independently of any individual conscious-being.

No might mean consciousness is something human beings plug into and even share.

No might mean God exists, and — though our bodies die — we never will.

Billy Lee 



Sensing the universe 3


Thanks to Erwin Schrödinger for his Mind and Matter lectures at Trinity College, Cambridge, Oct. 1956 for inspiring Billy Lee to write this essay; see  Schrödinger, What is Life?  available at Amazon.com

The Editorial Board